ON SUBSERIES CONVERGENCE IN F-SPACES

BY W. J. STILES

ABSTRACT

In this note, we show that a series, Σx_n , in a complete linear metric space with a basis is subseries convergent if and only if it is weakly subseries convergent.

It is well known that a series, Σx_n , in a B-space is subseries convergent if and only if it is weakly subseries convergent. This theorem was proved by Orlicz in [3] for weakly sequentially complete B-spaces and was proved in the above form by Pettis in [4]. It seems both interesting and useful to know in what class of spaces the above theorem is valid, and more recently Grothendieck [1] and McArthur [2] have shown that the theorem is true in locally convex Hausdorff spaces. Although the theorem clearly cannot be extended to all *F*-spaces $(L_p,$ $0 < p < 1$, for example) we will prove that it can be extended to all F-spaces with a basis. Our proof will give an alternate method for proving the Orlicz-Pettis theorem in those B-paces whose separable subspaces contain a basis. We begin by stating a lemma whose proof is given in [5].

LEMMA. Let X be an F-space with a basis, ${b_n}$, whose topology is given *by the norm p. If for each* $x = \sum \alpha_j b_j$ in X,

$$
\|x\| = \sup_{m \leq n} p\left(\sum_{j=m}^{n} \alpha_j b_j\right),
$$

then \parallel **i** *is a (perhaps nonhomogenous) norm on X equivalent to p.*

THEOREM. If X is an *F*-space with a basis, then a series, $\sum x_j$, in X is sub*series convergent if and only if it is weakly subseries convergent.*

PROOF. Let ${b_n}$ be a basis for X and let

Received September 17, 1969 and in revised form November 17, 1969

$$
\|x\| = \sup_{m \le n} p\left(\sum_{j=m}^n \alpha_j b_j\right)
$$

when $x = \sum \alpha_j b_j$ and p is any norm giving the topology for X. Let $x_n = \sum \alpha_j b_j$ and assume that $\sum x_n$ is weakly subseries convergent. We show first that $\lim \|x_n\| = 0$. Suppose that this is not true. Then there exists some $\varepsilon > 0$ and a subsequence $\{x_{n_j}\}\$ such that $||x_{n_j}|| > 2\varepsilon$. We suppose for convenience that $||x_n|| > 2\varepsilon$ for all *n*. Since $\sum f(x_n)$ is subseries convergent, we have $\sum |f(x_n)| < \infty$ for each continuous linear functional f . In particular, this holds when f is replaced by a coefficient functional f_n .

Let s_0 , $n_1 = 1$, and choose s_1 such that $\|\sum_{j=s_1}^{\infty} \alpha_j^{n_1} b_j\| < (\varepsilon/4)$. Then choose $r_1 > 0$ such that $\sup_{1 \leq j \leq s_1} |\alpha_j| < r_1$ implies that $\|\sum_{j=1}^{s_1} \alpha_j b_j\| < (\varepsilon/2)$. Having chosen n_k , s_k , and r_k , choose n_{k+1} , s_{k+1} , and r_{k+1} inductively in the following way Choose n_{k+1} such that

$$
\sup_{s_{n-1}\leq j\leq s_n}|\alpha_j^{n_{k+1}}|<\frac{r_n}{2^{k-n+1}} \qquad \text{for } n=1,2,\cdots,k
$$

and such that

$$
\Big\|\sum_{j=1}^{s_k}\alpha_j^{n_{k+1}}b_j\Big\|<\frac{\varepsilon}{2}
$$

Now choose s_{k+1} such that

$$
\sum_{i=1}^{k+1} \left| \sum_{j=s_{k+1}}^{\infty} \alpha_j^{n_i} b_j \right| < \frac{\varepsilon}{2^{k+2}}.
$$

Finally, choose r_{k+1} such that

$$
\sup_{s_k \leq j \leq s_{k+1}} |\alpha_j| < r_{k+1}
$$

implies

$$
\bigg\|\sum_{j=s_k}^{s_{k+1}}\alpha_jb_j\bigg\|<\frac{\varepsilon}{2}.
$$

Suppose that $\sum x_{n_i}$ converges weakly to x and $x = \sum \alpha_j b_j$. Since each f_j is continuous, $\alpha_j = \sum_{i=1}^{\infty} \alpha_j^{n_i}$

Furthermore, the conditions imposed above imply that

$$
\Big\|\sum_{j=s_{k-1}}^{s_k}\alpha_j^{n_k}b_j\Big\|\geq \frac{5}{4}\varepsilon,
$$

$$
\bigg\|\sum_{i=1}^{k-1}\sum_{j=s_{k-1}}^{s_k}\alpha_j^{n_j}b_j\bigg\|<\frac{\varepsilon}{2},
$$

and

$$
\Big\|\sum_{i=k+1}^{\infty}\sum_{j=s_{k-1}}^{s_k}\alpha_j^{n_i}b_j\Big\|<\frac{\varepsilon}{2}
$$

for all integers $k, k \ge 1$. Hence, it is easy to see that

$$
\left\|\sum_{j=s_k}^{s_{k+1}}\alpha_jb_j\right\|>\frac{\varepsilon}{4} \text{ for } k=1,2,\cdots.
$$

Thus, $\Sigma \alpha_i b_i$ is not convergent.

We now note that the set of all finite sums of elements of the set $\{x_i\}$ is a norm bounded set. Indeed, if this were not true it would be possible to construct a series, Σy_i , with

$$
y_j = \sum_{k=p_i}^{q_j} x_{n_k}
$$

where $\{p_j\}$ and $\{q_j\}$ are increasing sequences of positive integers chosen so that $||y_j|| > \rho > 0$ for all j and $\sum x_{n_k}$ is a subseries of $\sum x_j$. Since $\sum x_j$ is weakly subseries convergent, $\sum y_i$ is weakly subseries convergent and this implies that $\lim \|y_i\| = 0$, a contradiction.

$$
M_1 = \sup_{\sigma} \left| \sum_{i \in \sigma} x_i \right|
$$

where σ is a finite set of positive integers, and let σ_1 be any choice of σ for which $\|\sum_{i \in \sigma_1} x_i\| > M_1 - \frac{1}{2}$. Having chosen M_k and σ_k , choose M_{k+1} such that

$$
M_{k+1} = \sup_{\sigma} \left| \sum_{i \in \sigma} x_i \right|
$$

where σ ranges over all finite sets of positive integers such that $\sigma \cap (\bigcup_{i=1}^k \sigma_i) = \emptyset$. Now let σ_{k+1} be any admissable σ for which

$$
\Big\|\sum_{i \in \sigma_{k+1}} x_i\Big\| > M_{k+1} - \frac{1}{2^{k+1}}.
$$

If $\lim M_k \neq 0$, one can construct, as above, a series $\sum y_i$ which is weakly subseries convergent but lim $||y_n|| \neq 0$. This is again impossible. Hence lim $M_k = 0$, and this is easily seen to imply that Σx_i is unordered Cauchy. Since the space, *X*, is complete $\sum x_i$ converges.

In closing, we note that the referee has pointed out that it is apparently not known whether Orlicz's theorem holds in all F-spaces whose weak topology separates points.

REFERENCES

1. A. Grothendieck, *Sur les applicationes lindaires faiblement compactes d'espaces (CK),* Canad. J. Math. 5 (1953), 129-173.

2. C. W. McArthur, *On a theorem of Orlicz and Pettis*, Pacific J. Math. 22 (1967), 297-302.

3. W. Orlicz, Beitrage zur Theorie der Orthogonalentwicklungen, II, Studia Math. 1 (1929), 241-255.

4. B. J. Pettis, *On integration in vector spaces,* Trans. Amer. Math. Soc. 44 (1938), 277-304. 5. J. H. Shapiro, *Extension of linear functionats on F-spaces with bases,* Duke Math. J. (to appear).

FLORIDA STATE UNIVERSITY