ON SUBSERIES CONVERGENCE IN F-SPACES

BY W. J. STILES

ABSTRACT

In this note, we show that a series, $\sum x_n$, in a complete linear metric space with a basis is subseries convergent if and only if it is weakly subseries convergent.

It is well known that a series, $\sum x_n$, in a *B*-space is subseries convergent if and only if it is weakly subseries convergent. This theorem was proved by Orlicz in [3] for weakly sequentially complete *B*-spaces and was proved in the above form by Pettis in [4]. It seems both interesting and useful to know in what class of spaces the above theorem is valid, and more recently Grothendieck [1] and McArthur [2] have shown that the theorem is true in locally convex Hausdorff spaces. Although the theorem clearly cannot be extended to all *F*-spaces (L_p , 0 , for example) we will prove that it can be extended to all*F*-spaceswith a basis. Our proof will give an alternate method for proving the Orlicz-Pettis theorem in those*B*-paces whose separable subspaces contain a basis. Webegin by stating a lemma whose proof is given in [5].

LEMMA. Let X be an F-space with a basis, $\{b_n\}$, whose topology is given by the norm p. If for each $x = \sum \alpha_j b_j$ in X,

$$||x|| = \sup_{m \leq n} p\left(\sum_{j=m}^{n} \alpha_j b_j\right),$$

then || is a (perhaps nonhomogenous) norm on X equivalent to p.

THEOREM. If X is an F-space with a basis, then a series, $\sum x_j$, in X is subseries convergent if and only if it is weakly subseries convergent.

PROOF. Let $\{b_n\}$ be a basis for X and let

Received September 17, 1969 and in revised form November 17, 1969

$$||x|| = \sup_{m \le n} p\left(\sum_{j=m}^{n} \alpha_j b_j\right)$$

when $x = \sum \alpha_j b_j$ and p is any norm giving the topology for X. Let $x_n = \sum \alpha_j^n b_j$ and assume that $\sum x_n$ is weakly subseries convergent. We show first that $\lim ||x_n|| = 0$. Suppose that this is not true. Then there exists some $\varepsilon > 0$ and a subsequence $\{x_{n_j}\}$ such that $||x_{n_j}|| > 2\varepsilon$. We suppose for convenience that $||x_n|| > 2\varepsilon$ for all n. Since $\sum f(x_n)$ is subseries convergent, we have $\sum |f(x_n)| < \infty$ for each continuous linear functional f. In particular, this holds when f is replaced by a coefficient functional f_n .

Let s_0 , $n_1 = 1$, and choose s_1 such that $\|\sum_{j=s_1}^{\infty} \alpha_j^{n_1} b_j\| < (\varepsilon/4)$. Then choose $r_1 > 0$ such that $\sup_{1 \le j \le s_1} |\alpha_j| < r_1$ implies that $\|\sum_{j=1}^{s_1} \alpha_j b_j\| < (\varepsilon/2)$. Having chosen n_k , s_k , and r_k , choose n_{k+1} , s_{k+1} , and r_{k+1} inductively in the following way Choose n_{k+1} such that

$$\sup_{n-1 \le j \le s_n} |\alpha_j^{n_{k+1}}| < \frac{r_n}{2^{k-n+1}} \quad \text{for } n = 1, 2, \cdots, k$$

and such that

$$\left\|\sum_{j=1}^{s_k} \alpha_j^{n_{k+1}} b_j\right\| < \frac{\varepsilon}{2}$$

Now choose s_{k+1} such that

5

$$\sum_{i=1}^{k+1} \left\| \sum_{j=s_{k+1}}^{\infty} \alpha_j^{n_i} b_j \right\| < \frac{\varepsilon}{2^{k+2}}.$$

Finally, choose r_{k+1} such that

$$\sup_{s_k \leq j \leq s_{k+1}} |\alpha_j| < r_{k+1}$$

implies

$$\left\|\sum_{j=s_k}^{s_{k+1}}\alpha_j b_j\right\| < \frac{\varepsilon}{2}.$$

Suppose that $\sum x_{n_i}$ converges weakly to x and $x = \sum \alpha_j b_j$. Since each f_j is continuous, $\alpha_j = \sum_{i=1}^{\infty} \alpha_j^{n_i}$

Furthermore, the conditions imposed above imply that

$$\left\|\sum_{j=s_{k-1}}^{s_k}\alpha_j^{n_k}b_j\right\| \geq \frac{5}{4}\varepsilon_j$$

Vol. 8, 1970

$$\left\|\sum_{i=1}^{k-1}\sum_{j=s_{k-1}}^{s_k}\alpha_j^{n_i}b_j\right\| < \frac{\varepsilon}{2},$$

and

$$\left\|\sum_{i=k+1}^{\infty}\sum_{j=s_{k-1}}^{s_{k}}\alpha_{j}^{n_{i}}b_{j}\right\| < \frac{\varepsilon}{2}$$

for all integers $k, k \ge 1$. Hence, it is easy to see that

$$\left\|\sum_{j=s_k}^{s_{k+1}} \alpha_j b_j\right\| > \frac{\varepsilon}{4} \text{ for } k=1,2,\cdots.$$

Thus, $\sum \alpha_j b_j$ is not convergent.

We now note that the set of all finite sums of elements of the set $\{x_j\}$ is a norm bounded set. Indeed, if this were not true it would be possible to construct a series, $\sum y_j$, with

$$y_j = \sum_{k=p_i}^{q_j} x_{n_k}$$

where $\{p_j\}$ and $\{q_j\}$ are increasing sequences of positive integers chosen so that $||y_j|| > \rho > 0$ for all j and $\sum x_{n_k}$ is a subseries of $\sum x_j$. Since $\sum x_j$ is weakly subseries convergent, $\sum y_j$ is weakly subseries convergent and this implies that $\lim ||y_j|| = 0$, a contradiction.

Let

$$M_1 = \sup_{\sigma} \left| \sum_{i \in \sigma} x_i \right|$$

where σ is a finite set of positive integers, and let σ_1 be any choice of σ for which $\|\sum_{i \in \sigma_1} x_i\| > M_1 - \frac{1}{2}$. Having chosen M_k and σ_k , choose M_{k+1} such that

$$M_{k+1} = \sup_{\sigma} \left\| \sum_{i \in \sigma} x_i \right\|$$

where σ ranges over all finite sets of positive integers such that $\sigma \cap (\bigcup_{i=1}^{k} \sigma_i) = \emptyset$. Now let σ_{k+1} be any admissable σ for which

$$\left\|\sum_{i \in \sigma_{k+1}} x_i\right\| > M_{k+1} - \frac{1}{2^{k+1}}.$$

If $\lim M_k \neq 0$, one can construct, as above, a series $\sum y_j$ which is weakly subseries convergent but $\lim ||y_n|| \neq 0$. This is again impossible. Hence $\lim M_k = 0$, and this is easily seen to imply that $\sum x_j$ is unordered Cauchy. Since the space, X, is complete $\sum x_j$ converges.

W. J. STILES

In closing, we note that the referee has pointed out that it is apparently not known whether Orlicz's theorem holds in all *F*-spaces whose weak topology separates points.

References

1. A. Grothendieck, Sur les applicationes linéaires faiblement compactes d'espaces (CK), Canad. J. Math. 5 (1953), 129–173.

2. C. W. McArthur, On a theorem of Orlicz and Pettis, Pacific J. Math. 22 (1967), 297-302.

3. W. Orlicz, Beitrage zur Theorie der Orthogonalentwicklungen, II, Studia Math. 1 (1929), 241-255.

4. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.

5. J. H. Shapiro, Extension of linear functionals on F-spaces with bases, Duke Math. J. (to appear).

FLORIDA STATE UNIVERSITY